Progressão Aritmética - parte 1

A  sequência numérica onde, a partir do 2º termo, a diferença entre um número e seu antecessor resulta em um valor constante é denominada de Progressão Aritmética.


 O valor constante dessa sequência é chamado de razão da PA. Observe:
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, ...
5 – 2 = 3
8 – 5 = 3
11 – 8 = 3
14 – 11 = 3
17 – 14 = 3
20 – 17 = 3
23 – 20 = 3
26 – 23 = 3
29 – 26 = 3
Observe que nessa sequência a razão possui valor igual a 3.
Em uma progressão aritmética podemos determinar qualquer termo ou o número de termos com base no valor da razão e do 1º termo. Para tais cálculos, basta utilizar a seguinte expressão matemática:
an = a1 + (n – 1) * r
Exemplo 1
Sabendo que o 1º termo de uma PA é igual a 2 e que a razão equivale a 5, determine o valor do 18º termo dessa sequência numérica.
a18 = 2 + (18 – 1) * 5
a18 = 2 + 17 * 5
a18 = 2 + 85
a18 = 87
O 18º termo da PA em questão é igual a 87.
--- 

Atividades

1-) Encontre o termo geral da P.A. (2, 7, ...).
2-) Encontre o termo geral da P.A. (7/3, 11/4, ...).
3-) Qual é o décimo quinto termo da P.A. (4, 10, ...).
4-) Qual é o centésimo número natural par ?
5) Numa P.A. de razão 5, o primeiro termo é 4. Qual é a posição do termo igual a 44 ?
6) Vamos entrar num objeto de aprendizagem de P.A....click no link: PA
7) Atividade 2: Objeto de Aprendizagem
Referências
www.mauriciomunhoz.blogspot.com.br
Maurício Munhoz, é licenciado em Matemática e Especialista em Mídias na Educação.

Nenhum comentário:

Postar um comentário